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When to Renovate HUDSON ?
1
              FEBRUARY 2012 

 

Peter Paulson, the newly appointed chief real options manager (CROM) of MHG, 

is considering renovating Hudson, the largest hotel in the group. The announced 

strategy of MHG is to renovate and operate “boutique hotels” which are designed 

to provide guests with “distinctive lodging and social experiences”, in order to 

increase occupancy levels and “pricing power”.  Timing of renovation investments 

is a critical part of this strategy.  

 

Previously CROMs had looked at a group of five MHG hotels, suitable for 

renovation, Hudson, Morgans, Royalton, Mondrian Los Angeles and Delano South 

Beach.   The last four hotels were renovated in 2006-2008, and all the renovated 

hotels except for Delano were sold in 2011.  There are a total of 1544 rooms for 

the five hotels, which constitute about one-third of the total rooms managed by 

MHG as of December 2009.  The other hotels managed by MHG are a diverse lot, 

including two partially owned London hotels, Boston and other Miami hotels, a 

Las Vegas hotel and casino, and, formerly, a hotel in Scottsdale, which recently 

immerged from foreclosure.   

 

The flagship hotel, Morgans, opened in 1984, is named after the nearby Morgan 

Library on the site of the former home of J. Pierpoint Morgan on Madison Avenue, 

New York.  There are 114 rooms, including 30 suites. Facilities include the Living 

Room, a guest lounge that has a computer and books in one of the suites.  Morgans 

was renovated for $9 million over four months in 2008, including upgrades to the 

furniture, fixture and equipment, technology upgrades and an upgrade to the lobby.   

 

Hudson is close to Central Park, Columbus Circle, New York City. It was opened 

as a hotel in 2000, but formerly was the clubhouse of the American Women’s 

Association, originally constructed by J. P. Morgan’s daughter.  Hudson has 831 

                                                 
1
 (c) This case was prepared by Dean Paxson for the purpose of class discussion only and not as an illustration 

of either good or bad business practices.  The character of Peter Paulson is fictitious.  The figures for Hudson 

and the 5 hotel average are based on prospectuses and 10Ks of MHG over the last decade. 
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guest rooms and suites, including a 3344 square foot penthouse with a landscaped 

terrace, and an apartment with a 2500 square foot terrace.  Several plans for 

enhancement and enlargement of Hudson have been announced,  and the primary 

restaurant was “re-concepted and renovated” in 2009. 

 

Royalton has 168 rooms and suites, 37 with working fireplaces, and is near Times 

Square. Royalton was renovated (and “re-thought”) for $17.5 million over four 

months in 2007.  Delano South Beach, Miami, has 194 guest rooms, suites and 

lofts, an indoor/outdoor lobby and a 100-foot long pool.  Many rooms in Delano 

Miami were renovated in 2006-2007, with technology upgrades. Mondrian Los 

Angeles has 237 guest rooms, studios and suites, located on Sunset Boulevard.  

There was a renovation costing $40 million in 2008, including lobby renovations, 

room renovations, the replacement of bathrooms and technology upgrades. 

   

The multi-factor renovation problem is to find a R̂  given Ĉ  (the RevPAR level R 

at which a renovation decision should be made, if the CostPAR level equals Ĉ ), 

which is a solution to a small set of simultaneous equations.  Other specific 

renovation models are based on limiting assumptions: the deterministic net present 

value (NPV) model assumes all inputs are constant; and the single renovation 

model assumes only one renovation is possible. There are analytical solutions for 

all of these renovation models. 

 

1. Multiple Renovation Model  

  

Some textbooks on hotel investment and renovation such as Ramsley and Ingram 

(2004) and Jones, Lockwood and Mogendorff (2006) adopt the deterministic 

approaches. 

 

Stochastic single-factor models for developing properties are provided by Patel 

and Paxson (1998) (numerical solutions) and Paxson (2005) (analytical solutions), 

and also Paxson (2007) for sequential improvements. Many real property option 
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models are summarized in Patel, Paxson and Sing (2005), including funding lease 

arrangements which may have minimum renovation/maintenance requirements.     

 

Adkins and Paxson (2011) provide a quasi-analytical implicit solution to a two-

factor real option renewal model without having to reduce the dimensions.  This 

approach requires as the critical drivers of periodic renovations, the current 

revenue and cost levels and expected volatilities and correlation plus expected 

post-renovation revenue and costs in order to make appropriately timed renovation 

decisions. 

 

All the key quantities in the model are expressed on a per available room basis. 

For an all-equity hotel firm with no other revenues or costs, and ignoring taxes, the 

annual RevPAR is denoted by R  and the annual CostPAR by C , so the yearly net 

cash flow per available room is R C . Since amenities decline in quality due to 

usage, and consequently R and C deteriorate, hotels are obliged periodically to 

renovate their premises in order to restore market perceptions and competitiveness. 

It is assumed that for the hotel in question, renovation leads to significantly 

improved levels for R and C, denoted by IR  and IC , respectively. The renovation 

investment cost is denoted by K , assumed to be constant
2
.  Any residual salvage 

value for the hotel amenities at renovation, possibly old furniture and fittings, is 

treated as zero, or at least deterministic and absorbed in K . 

The two uncertain factors, R  and C , are assumed to be well described by 

geometric Brownian motion processes with drift. For  ,X R C : 

d d dX X XX X t X Z   ,  (1) 

where X  is the instantaneous drift rate, X  is the instantaneous volatility rate, 

and d XZ  is the increment of a standard Wiener process. Since hotel amenities 

deteriorate with usage, we would expect R  to be negative and C  to be positive. 

                                                 
2
 K is treated as a variable dependent on the improvement differential in Adkins and Paxson (2012). 
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Dependence between the two uncertain variables is described by the instantaneous 

covariance term R C   where  Cov d ,d dR CR C RC t   with 1  . 

 

The hotel value, which includes the embedded renovation option, is denoted by the 

valuation function .F  As the hotel value depends on R and C,  ,F F R C . 

Standard contingent claims analysis can be applied to the property with value F  to 

determine its risk neutral valuation relationship. This is expressed as the two-

dimensional partial differential equation: 

 

2 2 2
2 2 2 21 1

2 22 2

0,

R C R C

R C

F F F
R C PC

R C R C

F F
R C rF R C

R C

   

 

  
 

   

 
     

 

 (2) 

where X  denote the risk-adjusted drift rates, r=riskless interest rate.  Assume r-

X  >0, and X=X. The solution to (2) is as in Adkins and Paxson (2011): 

R C

R C
F AR C

r r

 

 
  

 
,  (3) 

with coefficient A  and parameters   and  . The function F  is composed of two 

elements. The term AR C   is interpreted as the renovation option, which being 

non-negative means 0A  . The second element 
R C

R C

r r 


 
represents the hotel 

value in the absence of optionality. Substituting F  in (2) demonstrates (3) as the 

solution and yields the characteristic root equation: 

     2 21 1
2 2

, 1 1 0R C R C R CQ r                       . (4) 

The limiting boundary conditions impose additional conditions on the form of .F  

Renovation becomes economically justified for a sufficiently low RevPAR and 

sufficiently high CostPAR such that the resulting incremental net revenue due to 

renovation more than adequately compensates for the renovation cost. These 

requirements are reflected in the renovation option value, which intensifies in 

value for increasingly low RevPAR and increasingly high CostPAR. This suggests 
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that  the power parameter   for R is negative, while  the power parameter   for 

C  is positive. 

 

The respective threshold levels for RevPAR and CostPAR are determined such 

that an optimal renovation is signalled as soon as the prevailing pair of RevPAR 

and CostPAR levels simultaneously attain their respective thresholds. The 

threshold levels are obtained from the economic boundary conditions for value 

conservation and optimality. For an optimal renovation to be signalled, the value 

for the hotel in the current state has to be exactly balanced by its net value in the 

improved state. At renovation, the hotel value is specified by  ˆˆ,F R C . 

Immediately following the renovation, the hotel value now in its improved state is 

given by  ,I IF R C .  

 

Value is conserved immediately before and after an optimal renovation when: 

ˆˆ
ˆˆ I I

I I

R C R C

R CR C
AR C AR C K

r r r r

   

   
     

   
 (5) 

 

Associated with the value matching relationship (5), there are two first order 

optimality conditions, one for each of the factors R  and C , which are referred to 

as the smooth pasting conditions, that can be expressed (when simplified) as: 

   
1 1

  
    

     
P C

ˆR̂ C
A

ˆ ˆˆ ˆr rR C R C
                                               (6)  

Clearly A 0  as required, since 0   and 0  . Re-arranging and 

simplifying (6), the reduced form smooth pasting condition is: 

   
0 

     
P C

ˆR̂ C

r r
                                                                                    (7)  

Using (6) to eliminate A , the value matching relationship (5) can be expressed 

as: 
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 
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Eliminating R̂ , this can be expressed as: 

 
 
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ˆr rC

R C
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r r

                                             (9)  

The characteristic root equation (4), the reduced form value matching relationship 

(9) and the reduced form smooth pasting condition (7) constitute the two-factor 

renovation model from which the discriminatory boundary is generated. To 

determine the boundary, solve these three equations (set equal to zero) 

simultaneously, by changing ,  and R̂  corresponding to some assumed Ĉ .  

 

The valuation function is: 

ˆ
( ) ( )

ˆ ˆ ( )R R C

R C R R C
F

r r rR C

 

   
  

   
                                                    (10)

 

                                            

2. Restricted Renovations 

 

Suppose that there are a finite number of renovation opportunities, due to design 

innovations, or locational transformations or structural deterioration.  JF R,C  

denotes the incumbent asset value when J  further renovation opportunities are 

available. For J 1 , one further renovation opportunity remains, after which the 

only available opportunity is abandonment. 

 

2.1 Single Renovation Option  

When there is only one remaining renovation opportunity so J 1 , the solution is 

derived directly from the model with multiple opportunities by eliminating the 

renovation option from the multiple renovation property value. Using the subscript 
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s  to denote the single renovation opportunity, then from (5), the value matching 

relationship becomes: 

 

ˆˆ
ˆˆ s s s s I I

s s s

R C R C

R C R C
A R C K

r r r r

 

   
    

   
.                                                     (11) 

It follows that the two smooth pasting conditions associated with (11) imply (7).  

By substituting and rearranging, the reduced value matching condition is: 

   

ˆˆ 1
0s s s I I

R s C R C

R C R C
K

r r r r



    

 
     

    
                                                   (12) 

The smooth pasting condition is: 

 

   
s s

s R s C

ˆR̂ C
0.

r r
 

     
                                              (13) 

 

The single renovation boundary is evaluated by solving the three simultaneous 

equations: the reduced form value matching relationship (12), the reduced form 

smooth pasting condition (13) and the characteristic root equation (4).  

 

The renovation boundaries for the cases of an infinite number of renovation 

opportunities and a single renovation opportunity are vertically stacked: the 

boundary for the infinite renovation model entirely lies above that for the single 

renovation model.  For every operating cost threshold level,  s
ˆ ˆR R  . This means 

that the trajectory of prevailing revenue and operating cost levels, starting from 

their respective initial levels IR  and IC  at renovation, will always hit the infinite 

renovation boundary first before reaching the single renovation.  Provided that IR  

and IC  remain unaltered during the property lifetime, a critical strong assumption, 

the infinite renovation policy always dominates the other policy. 

  

2.2 Deterministic Renovation Model 
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Using T* to denote the optimal deterministic timing, the first order condition for 

the maximum NPV for an infinite chain of property embedded renovation 

opportunities with a constant renovation interval T* simplifies to: 

1 1
0

    
           

             
   

ˆ ˆr T r T
CR I I

R C R C

R Ce eˆR̂ C K
r r r r r r r r

          (14)   

                                                                       

Using the subscript d to denote the deterministic version of the general renovation 

model, ˆ* T T , where the optimal cycle time is: 

ˆ ˆ1 1ˆ ln lnd d

C I R I

C R
T

C R 

   
     

  
                                              (15) 

0R d C d r      ,                                                          (16)  

ˆ
0

ˆ ˆ
rTI I

d d

R C
e

R C




  

     
   

                                                                                     (17) 

  

2.3  Solving Sets of Equations to Find R̂  

 

Table 1 shows the RevPAR and CostPAR for MHG five hotels over the last 

decade.  Note that the maximum profit per available room was achieved in 2006, 

so it is assumed that any renovations would bring R and C back to those levels.  

The growth of R and C are calculated as ln (Rt+1/Rt) and ln (Ct+1/Ct), MEAN is the 

average of those series, STDEV is the annual standard deviation of those growth 

series, and the CORREL the correlation of the growth series.   

   

Table 1 

 

      

 

 

FIVE HOTELS
 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010    

TOTAL RevPAR 452.78 401.30 387.51 386.06 424.56 471.38 487.76 515.30 497.25 390.93 397.12    

OP COST PAR 329.58 304.67 305.79 309.20 328.17 339.64 341.38 374.77 390.17 369.15 369.14   

PROFIT PER AVAILABLE ROOM 123.20 96.63 81.72 76.86 96.39 131.74 146.38 140.52 107.08 21.79 27.98 MEAN STDEV CORREL

RevPAR Growth MHG FIVE -12.07% -3.50% -0.38% 9.51% 10.46% 3.42% 5.49% -3.57% -24.05% 1.57% -1.31% 10.42% 78.30%

CostPAR Growth -7.86% 0.37% 1.11% 5.95% 3.44% 0.51% 9.33% 4.03% -5.54% 0.00% 1.13% 5.07%
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Figure 1 

 

Notice that the performance of MHG five hotels slightly exceeded that of the 

general U.S. hotel industry for only two years of the decade, but sharply 

underperformed the industry right after major renovations for most hotels in 2006-

2008.  There has been a sharp recovery over the last year, perhaps a delayed 

response to the renovations, or in general a recovery of the luxury hotel sector.  

The RevPAR volatility over the decade of the five hotel aggregate is about 20% 

higher than the US hotel industry, and the RevPAR downward drift about three 

times greater than for the US general hotel industry.  

 

The optimal renovation R̂ is determined for a particular Ĉ  using the base case 

[INPUT] in Figures 2, 3 and Table 1.  K is the average renovation cost per room 

for the four hotels that were renovated during 2006-2008.  In order to compare the 

general two stochastic factor case with the conventional deterministic case, first 

the deterministic results are calculated in Figure 2.  Simultaneously solving 

equations (14), (16) and (17), with the constraint (15), renovation is justified when 

R̂ falls to $431 (from $488) if Ĉ  has increased to over $380 (from $341).  

Assuming deterioration occurs at the end of the year, R would have declined to 

433 and C increased to 378 at the end of the ninth year, so the trigger spread 
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justifying a renovation is  reached.  The NPV at the renovation optimal R* and C* 

is equal to the  renovation cost of 336.  

     Figure 2 

 

 

Using Ĉ =380 for the two factor stochastic case, with R = .104 and C =.051, 

=.78, and solving equations (4), (7) and (9) simultaneously, Figure 3 shows that a 

renovation would be justified only if R<417.  For comparison, the general 

renovation model setting P=C=0 replicates the deterministic result. 
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                                        FIVE HOTEL DETERMINISTIC RENOVATION MODEL

INPUT Deterministic

RI $487.76 2006 TOTALRevPar

CI $341.38 2006 COST 

K 336.41    

C* 380.05   

R 0.00

C 0.00

 0.00

r 0.10

R -0.0131  

C 0.0113   

  

OUTPUT   

Q, 0.0000   

SP 0.0000  

VM 0.0000  

SUM 0.0000

 -2.6716

 5.7295

R* 430.829  

C* 380.047

T*C 9.463  

T*R 9.463  

R*-C* 50.782

Deterministic

Q, B11*B19+B12*B20-B10 EQ 16

SP ((B3/B21)^B19)*((B4/B22)^B20)-EXP(-B10*B23) EQ 17

VM B35-B36-B37 EQ 14

SOLVER SET B18=0,CHANGING B19:B22,B23=B24

T*C (1/B12)*(LN(B22/B4)) EQ 15

T*R (1/B11)*(LN(B21/B3)) EQ 15

R* VALUE 4114.39 EQ 14

C*VALUE 3989.13 EQ 14

Renewal V-K 125.26 EQ 14

NPV=0 0.0000 EQ 14

R* VALUE B21*((1/B10)+(B11/B10)*(EXP(-B10*B24)/(B10-B11)))

C*VALUE B22*((1/B10)+(B12/B10)*(EXP(-B10*B24)/(B10-B12)))

Renewal V-K B3/(B10-B11)-B4/(B10-B12)-B5

NPV=0 B35-B36-B37  

ASSET DETERIORATION OVER THE YEARS

YEARS 1 2 3 4 5 6 7 8 9 10

R 481.40 475.13 468.94 462.83 456.80 450.85 444.97 439.18 433.45 427.81

C 345.27 349.21 353.19 357.22 361.29 365.41 369.58 373.79 378.06 382.37

R-C 136.13 125.92 115.75 105.61 95.51 85.43 75.39 65.38 55.40 45.44

R $B$3*EXP($B$11*B46)

C $B$4*EXP($B$12*B46)
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Figure 3 
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 FIVE HOTEL ROOM RENOVATION MODEL
INPUT DETERMINISTIC Stochastic MULTIPLE Stochastic SINGLE

RI 487.76 487.76 487.76

CI 341.38 341.38 341.38

K 336.41 336.41 336.41

C* 380.05 380.05 380.05

R 0.00 0.104 0.104

C 0.00 0.051 0.051

 0.00 0.783 0.783

r 0.10 0.10 0.10

R -0.0131 -0.0131 -0.013

C 0.0113 0.0113 0.011

OUTPUT  

Q, 0.0000 0.0000 0.0000  

SP 0.0000 0.0000 0.0000  

VM 0.0000 0.0000 0.0000  

PART 1 4114.39 1351.40 125.26

PART 2 3989.13 0.0927 125.26

PART 3 125.26 -125.26

SUM 0.000 0.000 0.000 0.000

SOLVER SET E21=0, CHANGING B23:D25

 -2.6716 -2.7290 -2.6458  

 5.7295 3.1719 3.5423  

R* 430.829 417.163 362.155  

T* 9.463 11.921 22.703

F* 752.864 VALUE AT EXERCISE POINT

F* RenOption 1351.398 Renovation Option Value Stochastic

PART I -1351.40  

PART II 1.00  

PART III -598.53 OPERATING VALUE AT EXERCISE POINT

F*Deterministic 800.423 VALUE AT EXERCISE POINT

F*D RenOption 1278.139 Renovation Option Value Deterministic

PART I -1395.67

PART II 0.92

PART III -477.72 OPERATING VALUE AT EXERCISE POINT

F RenOp-RenDeter 73.26

Stochastic Multiple

Q, EQ 4 0.5*(C7^2)*C23*(C23-1)+0.5*(C8^2)*C24*(C24-1)+C9*C7*C8*C23*C24+C11*C23+C12*C24-C10

SP EQ 7 C25/(-C23*(C10-C11))-C6/(C24*(C10-C12)) 

VM EQ 9 C18*C19+C20

PART 1 PART 1 C6/(C24*(C10-C12))

PART 2 PART 2 1-C23-C24-((C3^C23)*(C4^C24)/(C6 (̂C23+C24)))*((-C23*(C10-C11)/(C24*(C10-C12))) -̂C23)

PART 3 PART 3 -C3/(C10-C11)+C4/(C10-C12)+C5

Stochastic Single

Q, EQ 4 0.5*(D7^2)*D23*(D23-1)+0.5*(D8^2)*D24*(D24-1)+D9*D7*D8*D23*D24+D11*D23+D12*D24-D10

SP EQ 13 D25/(-D23*(D10-D11))-D6/(D24*(D10-D12)) 

VM EQ 12 D18-D19

PART 1 PART 1 (D6/(D24*(D10-D12)))*(1-D23-D24)

PART 2 PART 2 D3/(D10-D11)-D4/(D10-D12)-D5

F* EQ 11 C29*-C30+C31

F* RenOption C29*-C30

PART I C25/(C23*(C10-C11))

PART II ((C6/C6)^C24)*((C25/C25)^C23)

PART III (C25)/(C10-C11)-(C6)/(C10-C12)

F*Deterministic C34*-C35+C36

F*D RenOption C34*-C35

PART I (B25/(C23*(C10-C11))

PART II ((C6/C6)^C24)*((B25/C25)^C23)

PART III (B25)/(C10-C11)-(C6)/(C10-C12)

F RenOp-RenDeter C28-C33
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Figure 3 also shows the triggers for a single remaining renovation opportunity. The 

R̂ is much lower than for multiple renovations.  Indeed (R̂ -Ĉ ) <0 before a single 

renovation is justified, with Ĉ =380, so the issue of multiple versus single (or 

limited number of) possible renovations is a critical consideration in renovation 

decisions.  Based on the deterministic drifts, T* is almost twice as long. 

Figure 4 

 

Peter is particularly concerned about the expected volatility and correlation inputs. 

It is apparent (assuming correlation equals .78, the base case) that sharp increases 

in expected R and C volatility significantly reduce R̂  as shown in Figure 4.  

 

Finally, as an illustration of the value destroyed by exercising the renovation 

option too early, Figure 3 also shows the renovation option value at the optimal 

stochastic multiple 

R̂ in contrast to exercise at the deterministic d

R̂ .  There is a 
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significant difference in the level of the RevPAR at which it is optimal to make the 

renovation and there would be significant value destroyed (73.38) by early 

exercise at the deterministic threshold.  If Peter can get the renovation timing right 

on Hudson, he wondered how much of the increased value he should pay himself 

for being an alert CROM. 

3. Application to HUDSON 

Table 2 illustrates the data for the Hudson hotel. Note that the first year inputs are 

only for part of the year.  Peter thought he would calculate the RevPAR and 

CostPAR growth as ln (Rt+1/Rt) and ln (Ct+1/Ct).  He assumed the mean drift is the 

mean of each growth series, the volatility is the annual standard deviations of the 

growth series, and the correlation is the correlation of RevPAR and CostPAR 

growth. 

Table 2 

 

 

 

Peter assumes that K for Hudson will be about 336 per room, and RevPAR and 

CostPAR after the renovation will be the same as in 2007,  before the financial 

crisis.   

 

 

 

HUDSON
ROOMS  STATISTICS

834 2005 2006 2007 2008 2009 2010    

OCC 0.853 0.876 0.918 0.907 0.838 0.886

ADR 247 265 284 283 200 213

RevPAR 211 232 261 257 168 189

ROOM REV 61673 68106 76610 75722 49853 57360

NONRM-REV 19220 19977 24661 22067 15810 15444

TOTAL REV 80893 88083 101271 97789 65663 72804

OP INC 24756 33807 36800 32885 6329 9564

OP COST 56137 54276 64471 64904 59334 63240

PER ROOM

RevPAR 202.60 223.73 251.67 248.75 163.77 188.43    

OCC*ADR 210.69 232.14 260.71 256.68 167.60 188.72    

NONRM-RevPAR 63.14 65.63 81.01 72.49 51.94 50.73    

TOTAL RevPAR 265.74 289.36 332.68 321.24 215.71 239.16    

OP COST PAR 184.41 178.30 211.79 213.21 194.91 207.75    

PROFIT PER AVAILABLE ROOM 81.32 111.06 120.89 108.03 20.79 31.42   

RENOVATION COST PER ROOM   MEAN STDEV CORREL

RevPAR Growth  8.52% 13.95% -3.50% -39.83% 10.32%    

OpCOST Growth  -3.37% 17.21% 0.67% -8.97% 6.38%   
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HUDSON: CASE QUESTIONS 

I What are the assumptions, limitations and interpretations of the 

renovation models that Peter should note? 

II  What are the appropriate R and C drifts, volatilities and correlation 

for Hudson for use in the model? 

III  What is the optimal R and C to renovate Hudson, and considering 

the last renovation was in 2000, what is the appropriate year of 

renovation based on the deterministic, single and multiple models? 

IV  At what value should Hudson be sold now, or at the time of 

renovation, and what is the appropriate marketing for promoting this 

value? 
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